Procr+ chondroprogenitors sense mechanical stimuli to govern articular cartilage maintenance and regeneration.
Protein C receptor+ (Procr+) cells were identified as stem or progenitor cells in multiple adult tissues. However, whether mechanical stimuli fine-tune their activation and differentiation remain unknown. Here, we found rare Procr+ cells in the superficial layer of tibial articular cartilage and meniscus, which keep replenishing chondrocytes in postnatal knee joints. Mechanical stimulation by forced running significantly increased the frequency of Procr+ cells, whereas mechanical unloading by tail suspension showed opposite effects. Osteoarthritis (OA) activated Procr+ cells to repair cartilage erosion, whereas genetic ablation of Procr+ cells accelerated OA progression. Pharmacological or genetic inhibition of the mechanosensor Piezo1 significantly blunted cartilage regeneration by Procr+ cells and exacerbated OA. In contrast, intra-articular administration of a Piezo1 agonist ameliorated OA symptoms. Purified mouse or human Procr+ superficial cells robustly repair articular cartilage after expansion and in vivo transplantation. Together, we discovered a mechanosensitive chondroprogenitor population indispensable for articular cartilage maintenance and regeneration.
Authors
Zhu Zhu, Yin Yin, Qin Qin, Shi Shi, Liu Liu, Zhao Zhao, Wang Wang, Zhang Zhang, Fan Fan, Cao Cao, Peng Peng, Zhou Zhou, Wang Wang, Zou Zou, Yue Yue
View on Pubmed