Molecular mechanisms of unique therapeutic potential of CUDC-907 for MEF2D fusion-driven BCP-ALL.

MEF2D fusions are found in a special subtype of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with poor prognosis. In this study, we conducted high-throughput drug screenings using cell line and ex vivo cell model harboring, respectively, MEF2D::HNRNPUL1(MH) and MEF2D::BCL9(MB), the two major MEF2D fusions. We identified CUDC-907 as a highly potent dual-target inhibitor of PI3K/HDAC, demonstrating remarkable efficacy in inducing robust lethality while maintaining selectivity for MEF2D fusion-expressing cells. CUDC-907 effectively induced apoptosis and promoted the down-regulation of pre-BCR signaling. We discovered that the hyperactivation of the PI3K-AKT signaling pathway, HDAC9, and BCL2 contributed to the sustained state of MEF2D fusion (+) BCP-ALL. Importantly, CUDC-907 exerted dual regulatory function by targeting the integrative pathways of MEF2D fusions. It suppressed the PI3K-CREB pathway and fusion gene expression, while simultaneously inhibited transcriptional activity regulated by the MEF2D fusion-HDAC axis. CUDC-907 demonstrated remarkable efficacy in patient samples carrying distinct MEF2D fusion variants in vitro. Furthermore, this compound's effectiveness and safety were confirmed in both MH/NRASG12D BCP-ALL mouse model and MB patient-derived xenograft (PDX) model, outperforming conventional therapies. These results support the therapeutic potential of dual-pathway inhibition in MEF2D fusion (+) BCP-ALL and suggest CUDC-907 as a promising candidate for precision treatment in fusion-driven leukemias with similar molecular dependencies.
Cancer
Policy

Authors

Xue Xue, Zhang Zhang, Mo Mo, Jiao Jiao, Liu Liu, Jiang Jiang, Zhou Zhou, Tan Tan, Li Li, Zhang Zhang, Zhang Zhang, Li Li, Li Li, Ma Ma, Jing Jing, Mi Mi, Wang Wang, Chen Chen, Shen Shen, Chen Chen
View on Pubmed
Share
Facebook
X (Twitter)
Bluesky
Linkedin
Copy to clipboard