Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer Cells.

Introduction: Sonodynamic therapy (SDT) is a promising approach that combines low-intensity ultrasound (LIUS) with a sensitizing agent to induce therapeutic effects. Curcumin-coated silver nanoparticles (Cur@AgNPs) have shown potential as a sensitizer, demonstrating adverse effects on cancer cell survival. This study examined the apoptotic effects of US waves in the presence of Cur@AgNPs on MCF7 breast cancer cells. Methods and Materials: MCF7 cells were cultured and divided into different treatment groups. Cur@AgNPs were synthesized and characterized using various techniques, confirming their size to be approximately 29.3 ± 5.6 nm. The IC50 of Cur@AgNPs in MCF7 cells was determined to be 48.23 µg/ml through the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. LIUS radiation was applied to the cells in different modes, both with and without Cur@AgNPs. Cell viability was evaluated using the MTT assay and reactive oxygen species (ROS) production was measured. Colony formation assay and real-time PCR were conducted to evaluate cell death and changes in gene expression of Bcl-2-associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), and Caspase-3, respectively. Results: The findings confirmed the successful synthesis of Cur@AgNPs with a uniform size of approximately 29.3 ± 5.6 nm. In the continuous wave (CW) and pulse wave (PW) modes, 50% and 25%, cell viability was measured at 65.01% ± 1.35%, 73.75% ± 1.80%, and 80.76% ± 1.57%, respectively. Cell viability in CW with Cur@AgNPs was 16.9% ± 4%. The plating efficiency (PE) of the combined treatment group was 13.66 ± 1.24, compared to 39.33 ± 1.24 for the US.CW group and 68.66 ± 2.62 for the Cur@AgNPs group. Also, the expression of proapoptotic genes, such as Bax and Caspase-3, increased, while the expression of the antiapoptotic gene Bcl-2 decreased in MCF7 cells treated with the SDT. Flow cytometry analysis revealed increased rates of early apoptosis (21.22% ± 3.82%) and late apoptosis (36.59% ± 4.5%) in the US.CW + Cur@AgNPs. Conclusion: This study provides novel insights into the induction of apoptosis in MCF7 breast cancer cells through SDT in the presence of Cur@AgNPs as a sonosensitizer. These findings support the potential of SDT as an effective therapeutic approach for breast cancer treatment using nonionizing and noninvasive methods.
Cancer
Care/Management

Authors

Hormozi-Moghaddam Hormozi-Moghaddam, Neshasteh-Riz Neshasteh-Riz, Taheri Taheri, Amini Amini, Sedghinezhad Sedghinezhad
View on Pubmed
Share
Facebook
X (Twitter)
Bluesky
Linkedin
Copy to clipboard